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Abstract. We compare our previously proposed hard-thermal-loop (HTL) resummed calculation of quark
number susceptibilities using a self-consistent two-loop approximation to the quark density with a recent
calculation of the same quantity at the one-loop level in a variant of HTL-screened perturbation theory.
Besides pointing out conceptual problems with the latter approach, we show that it severely over-includes
the leading-order interaction effects, while including none of the plasmon terms, which is the main reason
for requiring improved resummation schemes.

1 Introduction

In view of the ongoing search for quark–gluon plasma
signals in the early stages of ultrarelativistic heavy-ion
collisions, quark number susceptibilities (QNSs) have re-
cently received enhanced attention because of their direct
connection with fluctuations of conserved charges which
could in principle discriminate against a purely hadronic
phase [1–3]. Concurrently, new results for QNS have be-
come available from lattice gauge theory [4,5] which con-
siderably improve upon previous studies [6], and more-
over extend them to higher T/Tc. The diagonal1 QNS
are found to increase sharply at the deconfinement phase
transition toward a large percentage of the ideal-gas value
χ0 = NT 2/3 for SU(N) and massless quarks.

Conventionally resummed perturbative results for ther-
modynamic quantities, on the other hand, do not seem to
be applicable to account for the observed deviation from
ideal-gas behavior because of a complete lack of conver-
gence for all temperatures of interest. In the case of the
free energy, this problem is particularly severe, because
the so-called plasmon contribution ∝ α

3/2
s is larger than

the leading-order interaction term ∝ αs for all tempera-
tures T � 105Tc. A similar but less dramatic problem also
occurs with the perturbative result for the diagonal QNS

1 Off-diagonal QNS are strongly suppressed in the high-
temperature phase. Still, they give rise to a puzzling discrep-
ancy between recent analytic and lattice calculations. The
leading-order effect ∝ α3

s log(αs) has recently been calculated
in [7], implying a numerical value of ∼ 10−4, whereas the avail-
able lattice results are claimed to be consistent with zero within
an accuracy of � 10−6 [4]
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for QCD (N = 3) with Nf quark flavors. For Nf = 2
the plasmon term overcompensates the term ∝ αs for all
temperatures T � 40Tc, and only for T � 700Tc does χ/χ0
show the expected growth with temperature, starting from
values extremely close to the ideal-gas result.

In [7] we have shown that these problems can be avoided
by a reorganization of perturbation theory which is based
on a self-consistent (Φ-derivable) two-loop approximation
to the thermodynamic potential [8]. The latter leads to a
non-perturbative expression for entropy and quark density
which can be used to resum the so-called hard thermal
loops (HTL) [9,10] and particular next-to-leading order
corrections thereof. The results for QNS thus obtained are
monotonic functions of T/Tc which account at least for a
sizable part of the deviation from the ideal-gas behavior
observed in lattice calculations for T/Tc � 2Tc.

Recently, a different approach to resum the effects of
HTL in QNS has been put forward in [11] which starts
from quark number charge correlators. Employing HTL
propagators and vertices at one-loop order, one finds sub-
stantially larger deviations from the ideal-gas limit, seem-
ingly in a good agreement with the lattice results of [4].

In view of the large efforts invested at present by lat-
tice gauge theorists to explore the effects of small chemical
potentials at high temperature in QCD, we think it worth-
while to explain the fundamental differences between our
approach and that of [11] and explain why, in our opinion,
the results of the latter are actually misleading. In particu-
lar we show that the one-loop results of [11] severely over-
include the leading-order interaction effects, while they
contain none of the plasmon effects ∝ α

3/2
s (which are the



434 J.-P. Blaizot et al.: Comparing different hard-thermal-loop approaches to quark number susceptibilities

source of the problems with conventionally resummed per-
turbation theory). Moreover, we point out a certain tech-
nical difficulty that has been overlooked by the authors of
[11], but has the effect to render their result ill-defined in
a distributional sense.

More importantly even, we comment on a conceptual
problem with the approach followed in [11] which arises
because the HTL action is no longer used as the effective
theory for soft modes, but is used throughout all of phase
space. Implicitly the definition of the quark number charge
operator is modified such as to no longer conform with the
operator employed in lattice calculations.

Before discussing the approach of [11] in detail in
Sect. 3, we briefly review the QNS as obtained from HTL-
resummed thermodynamic potentials. Section 4 summa-
rizes our conclusions.

2 QNS from resummed thermodynamic
potentials

2.1 Generalities

The QNS of a given quark flavor is by definition the re-
sponse of the quark number density N to an infinitesimal
variation of the associated chemical potential µ,

χ =
∂N
∂µ

=
∂2P

∂µ2 = β

∫
d3x 〈ρ(0,x)ρ(0,0)〉, (2)

where P = (βV )−1 logZ is the thermodynamic pressure,
β = T−1 and ρ = ψ̄γ0ψ.

When thermodynamic consistency is automatic, for ex-
ample in strict perturbation theory to a given order in αs,
it does not matter which of the equivalent expressions on
the right-hand side of (2) is employed. However, when fur-
ther resummations are performed that amount to a partial
inclusion of higher-order effects, it does in fact matter. To
set the stage we begin by briefly reviewing the approaches
which focus on the thermodynamic potential before turn-
ing to [11] which starts from the quark number charge
correlator.

Expressed as a functional of full propagators (D for
gauge bosons and S for fermions, and assuming a ghost-
free gauge choice) the thermodynamic potential Ω =
−PV = −T logZ has the form [12]

βΩ[D,S] =
1
2
Tr logD−1 − 1

2
TrΠD

− Tr logS−1 + TrΣS + Φ[D,S], (3)

where Φ is the sum of two-particle-irreducible “skeleton”
diagrams whose lowest-order (two-loop) contributions are

Φ[D,S] = -1/12 -1/8 +1/2 + ...

As a functional of D and S, Ω is subject to the sta-
tionarity condition,

δΩ[D,S]/δD = 0 = δΩ[D,S]/δS, (4)

which is equivalent to

δΦ[D,S]/δD =
1
2
Π, δΦ[D,S]/δS = Σ, (5)

for the self-energies Π and Σ. Expressing Π = D−1−D−1
0

and Σ = S−1 − S−1
0 in terms of bare propagators D0

and S0, the representation (3) of course reproduces the
ordinary loop expansion.

For example, the leading-order interaction terms ∝ αs
are given by the two-loop diagrams in Φ, whereas single
powers of the self-energy insertions in a propagator cancel
out in the first four terms of the right-hand side of (3).

Ordinary perturbation theory, however, has infrared
problems at finite temperature if the repeated self-energy
insertions contained in the term (1/2)Tr logD−1 are ex-
panded out perturbatively. These can be remedied by a
resummation of the leading-order Debye mass

m̂2
D = (2N +Nf )

g2T 2

6
+

∑
i

g2µ2
i

2π2 (6)

in the (chromo-)electrostatic propagator, where g2 = 4παs
(though new infrared problems arise at order α3

s ). Ex-
panded in powers of g, the resummation of the Debye mass
in (1/2)Tr logD−1 gives rise to the so-called plasmon term
in the pressure

P3 = NgTm
3
D/(12π). (7)

It is this term which is responsible for the dramatic deteri-
oration of the apparent convergence of a perturbative ex-
pansion of P in g at finite temperature, and, as remarked
in the introduction, to a somewhat lesser degree for QNS
which can be derived from the pressure.

2.2 Screened (HTL) perturbation theory

The loss of apparent convergence upon inclusion of the
plasmon term in the pressure is in fact generic and also oc-
curs in a simple scalar ϕ4 theory [13]. This problem arises
as soon as finite-temperature contributions are expanded
out in powers of the coupling, which is necessary for the
standard ultraviolet renormalization program to become
applicable. In order to avoid this, it has been proposed
[14] to reorganize perturbation theory by adding screening
masses to the classical Lagrangian and to subtract them
as counter-terms, but in contrast to the usual resumma-
tion program at finite temperature [9,10], this is done for
both hard and soft momentum regimes. This in fact alters
the ultraviolet structure of the theory, but when combined
with a simple minimal subtraction of the additional diver-
gences this resummation appears to significantly improve
the apparent convergence of thermal perturbation theory.

In [15,16] this approach has been extended to QCD at
one-loop level. It amounts to keeping only the logarithmic
terms in (3) and replacing D and S by the HTL propaga-
tors,

βΩone−loop−HTL =
1
2
Tr log D̂−1 − Tr log Ŝ−1, (8)
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where hatted quantities refer to HTL. If the thermal mass
parameters in the HTL are exactly the lowest-order ones,
this includes the correct plasmon term (7) without causing
the pressure to exceed the ideal-gas value. However, the
leading-order interaction pressure ∝ αs is over-included
by a factor2 of 2.

In order to have both, the leading-order term ∝ αs and
the plasmon term α

3/2
s included correctly, it is necessary

to go to two-loop order. Starting from two-loop order, one
can turn this so-called “HTL perturbation theory” into
a variational perturbation theory, where the HTL action
is no longer used as an effective theory for soft modes
as in standard HTL resummation [9,10], but just as a
gauge invariant mass term which is then eliminated by a
principle of minimal sensitivity.

Because of the HTL action involves non-local self-ener-
gies and vertices, this optimization of perturbation theory
is extremely difficult and has only recently been carried
through for QCD to two-loop order [17]. The results are a
clear improvement over conventionally resummed pertur-
bation theory as the resummed pressure remains below
the ideal-gas limit despite a full inclusion of the contri-
butions through order α2 log(αs). However they appear to
account for less than half of the deviation from ideal-gas
behavior that is observed on the lattice.

The main virtue of this approach is its completely sys-
tematic nature. From a physical point of view, a possible
weakness is that the HTL action is used uniformly for
soft and hard momenta, whereas the HTL action is accu-
rate only for soft momenta, and for hard ones only in the
vicinity of the light-cone. A related problem is that the
artificial UV divergences that are introduced involve new
subtraction scheme dependences. While these start to be
suppressed by powers of αs only at the (rather forbidding)
three-loop order [18], these additional scheme dependences
turn out to be numerically rather weak in the two-loop re-
sult for QCD.

2.3 HTL resummation
of the two-loop Φ-derivable entropy and density

Whereas HTL-screened perturbation is in principle rather
generally applicable, we have found, following up an ob-
servation made in [19], that specifically for the first deriva-
tives of the thermodynamic potential one can derive re-
markably simple expressions from a self-consistent two-
loop approximation to the skeleton expansion (3) of the
QCD thermodynamic potential. Because of the station-
arity property, these derivatives act only on the explicit
statistical distribution functions, and not also on those
contained in propagators and self-energies. Moreover, after
differentiation, the contribution from Φtwo−loop just can-
cels part of the second and fourth term on the right-hand
side of (3). The derivatives with respect to temperature

2 As explained in the last paper of [8], [15] had an even
stronger over-inclusion due to an inconsistent use of dimen-
sional regularization

Fig. 1. Next-to-leading order corrections to the asymptotic
fermion mass

and chemical potential give entropy and quark densities,
respectively, reading [8]

S = −tr
∫

d4k

(2π)4
∂n

∂T

[
Im logD−1 − ImΠReD

]

− 2tr
∫

d4k

(2π)4
∂f

∂T
[Im logS−1 − ImΣReS], (9)

N = −2 tr
∫

d4k

(2π)4
∂f

∂µ

[
Im logS−1 − ImΣReS

]
, (10)

where D and S are determined by one-loop gap equations
(5) obtained by restricting Φ to two-loop order.

Although these equations have the form of one-loop
expressions involving dressed propagators, they include
all the two-loop contributions, but incorporated in the
spectral properties of the quasi-particles described by the
dressed propagators. This implies that both the leading-
order interaction terms ∝ αs and the plasmon effect ∝
α

3/2
s are completely taken into account as soon as D and
S are evaluated to sufficient accuracy.

Because the expressions (9) and (10) are manifestly
ultraviolet finite, they can be used to resum the effects of
HTL without the necessity of subsequent expansions and
truncations3. At soft momenta, the HTL are valid expres-
sions to the actual full propagators that one would have to
use in a self-consistent scheme; at hard momenta it turns
out that to leading order the above expressions only probe
the vicinity of the light-cone where HTL self-energies re-
main accurate. The next-to-leading order effect, which is
the plasmon effect, turns out to be to one part covered
by HTL resummation in the soft regime, and to the re-
maining part by corrections to the so-called asymptotic
thermal masses from HTL-resummed one-loop diagrams.

In the case of the quark number density functional,
from which the QNS can be derived, it turns out that all
of the plasmon effect is associated with next-to-leading
order corrections to the asymptotic fermion mass, shown
in Fig. 1.

If only the HTL approximation to the fermion propa-
gator is employed, the quark number density still contains
the complete leading-order interaction effects ∝ αs, and –
since it need not be expanded out perturbatively – also
subsets of higher-order effects, namely those associated
with repeated HTL insertions.

In [7] we have evaluated the QNS obtained by tak-
ing the derivative of (10) with respect to µ, both in the
HTL approximation and in a next-to-leading approxima-
tion which incorporates the plasmon effect through the
corrections to the asymptotic fermion mass from the dia-
gram of Fig. 1.

3 For a different approach based on the pressure see also [20]
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+2 +

Fig. 2. Lowest-order contributions to (12) in bare perturbation
theory

3 QNS from HTL-resummed charge
correlators

In [11] an HTL-resummed QNS has been constructed by
starting from the charge correlator

χ = β

∫
d3x 〈ρ(0,x)ρ(0,0)〉 ≡ β

∫
d3xΠ>

00(0,x), (11)

where Π>
µν is the current–current correlator of a given fla-

vor charge (suitable linear combinations of such quantities
give the correlators of electric charge and baryon number).

In Fourier space one has [21–23]

χ = lim
k→0

β

∫ ∞

−∞

dω
2π
Π>

00(ω, k), (12)

where the well-known fluctuation–dissipation theorem al-
lows one to write (in the notation of [10])

Π>
µν(ω, k) = − 2

1 − e−βω
ImΠR

µν(ω, k) (13)

with ΠR
µν the retarded response function.

In conventional perturbation theory the first few di-
agrams contained in (12) are shown in Fig. 24. The first
diagram gives the ideal-gas value, and the leading-order
interaction term ∝ αs in (1) is given by the two-loop or-
der diagrams. The plasmon effect ∝ α

3/2
s comes from those

higher-order diagrams which correspond to repeated self-
energy insertions into the gluon lines of the two-loop dia-
grams of Fig. 2.

Calculating χ from (12) is in fact a bit more involved
than starting from the thermodynamic potential as also
noticed in [21]. Because charge conservation implies
ωΠ>

00(ω, 0) = 0 one has limk→0Π
>
00(ω, k) ∼ δ(ω).

If, for example following HTL-screened perturbation
theory, one is interested in the one-loop contribution aris-
ing from dressing the propagators in Fig. 2, this will spoil
this behavior. In order to have charge conservation one
needs to employ HTL vertices in addition to HTL prop-
agators, which is precisely what the authors of [11] have
proposed.

However, this raises an important conceptual problem:
in effect this use of the HTL vertices replaces the ordinary
charge operator ψ̄γ0ψ by the non-local object ψ̄(γ0+Γ̂ 0)ψ
derivable from the non-local HTL action. The correspond-
ingly re-defined QNS is therefore no longer directly related
to the quantity defined in (11) and measured in lattice
simulations.

4 One-particle-reducible diagrams, which in principle con-
tribute, vanish because of the tracelessness of color matrices

+ =

+2 + +

Fig. 3. One-loop contributions to (12) in HTL-screened per-
turbation theory. The vertex parts built from bare propagators
are understood to be evaluated in the HTL approximation

-2

+

-

+2

-2

+  ...

Fig. 4. Two-loop contributions to (12) in HTL-screened per-
turbation theory which contribute to the leading-order inter-
action terms ∝ αs

This is in fact a problem only because the HTL action
is no longer used as an effective theory appropriate for soft
momentum scales, but is used equally for soft and hard
momenta. As an effective theory, obtained after integrat-
ing out the hard momenta and used for soft modes only,
the appropriate charge operator is indeed the non-local
quantity involving the HTL vertex Γ̂ 0. It is this opera-
tor which enters in a perturbative matching to the full
theory. But replacing the ordinary charge operator by the
HTL-dressed one for all momenta clearly corresponds to
abandoning the definition (11) for the QNS.

Leaving this issue aside for now, we continue by analy-
sing the diagrammatic content of χ in HTL-screened per-
turbation theory. Since HTL vertices are strictly one-loop
quantities, to one-loop order it is as shown in Fig. 3.

However, while all the topologies that are present in
the two-loop diagrams of Fig. 2 also appear in the dia-
grams of Fig. 3, their combinatorial factors are different.

This shows that in the one-loop HTL approximation to
(12) the αs contributions are all overcounted. The second
diagram of Fig. 2 is contained with correct combinatorics
in the first diagram of the right-hand side of Fig. 3 but
appears another time through the HTL four-vertex; the
third diagram of Fig. 2 is seen to be over-included by a
factor of 2. Moreover, because the HTL approximation
for the undressed self-energies and vertex subdiagrams in
Fig. 3 does not provide the complete leading-order terms
for hard inflowing momenta, this leads to a further source
of incompleteness of the terms ∝ αs.

The authors of [11] do not specify how to extend their
approach to two-loop order. It is clear, however, that the
correct counting is restored only when the modification
of the quark number charge is undone by HTL counter-
terms and all two-loop diagrams are added. The relevant
diagrams for completing the order αs result are shown in
Fig. 4, where the first and the third diagram correspond to
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Fig. 5. χ/χ0 as a function of M/T . The dashed line is the per-
turbative result to order g2, the upper full line is the two-loop
Φ-derivable approximation evaluated with HTL propagators,
the lower full line is the one-loop HTL result of [11]

HTL counter-terms to the charge operator5. This means
that the definition of the charge operator in (11) has to
be modified order by order to approach the standard def-
inition of QNS at least at infinite loop order.

This also shows that the plasmon term ∝ α
3/2
s , which

is the reason for seeking improvements of conventionally
resummed perturbation theory, only appears in the two-
loop order diagrams of HTL-screened perturbation theory,
namely through the dressed vector boson lines with a blob.
The vector boson lines within the HTL vertices of Fig. 2
are not dressed and thus do not capture anything of the
plasmon effect.

We are now in a position to compare with the HTL-
resummation approaches discussed in the previous section.

In one-loop HTL-screened perturbation theory along
the lines of [15,16] the leading-order interaction term to
the thermodynamic potential is over-included by a fac-
tor 2, but the plasmon effect is complete (as long as only
the leading-order HTL mass parameter is used; including
higher-order corrections in the latter would spoil this).
The QNS have not been calculated in this approach, but
the same pattern would apply, provided the perturbative
HTL masses are inserted before6 differentiating with re-
spect to µ.

On the other hand, in the two-loop Φ-derivable quark
density (10), the leading-order interaction term is already
correctly included when evaluating it in the HTL approx-
imation but the plasmon term is absent (it arises exclu-
sively from next-to-leading order corrections to the asymp-
totic (hard) thermal fermion mass).

In Fig. 5, the QNS we have obtained from (10) in the
HTL approximation [7] is evaluated as a function of the
fermionic plasmon mass7 M/T and compared with a nu-

5 The 2nd and 4th diagram have opposite combinatorial fac-
tors but may also contribute to order αs because of the incom-
pleteness of the HTL approximation for hard loop momenta

6 Giving up thermodynamic consistency, one could think of
identifying the mass parameter in HTL-screened perturbation
theory only after this differentiation. This would in fact give
a correct leading-order interaction term, but would loose the
plasmon effect (and not completely reproduce the terms of or-
der α2

s and higher contained in (10))
7 For plots in terms of αs or T/Tc, see [7]
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Fig. 6. R = (χ − χ0)/(χ(2)
p.th. − χ0) as a function of M/T for

the one-loop HTL result of [11] (upper half of the plot) and for
the two-loop Φ-derivable approximation evaluated with HTL
propagators (lower half of the plot – note the different scale!).
The perturbative result to order g2 corresponds to the value
1. Only the two-loop HTL result approaches 1 in the limit
M/T → 0, where eventually perturbation theory should be
reproduced; the one-loop HTL result of [11] is seen to over-
include the leading-order interaction effect by a factor which
diverges logarithmically as M/T ∝ g → 0

merical evaluation of the one-loop HTL result reported
in [11]. While our result shows a slightly slower devia-
tion from the ideal-gas limit than the strictly perturba-
tive result to order α1

s , the result of [11] has considerably
stronger deviations because of the over-inclusion of the
leading-order interaction term.

In Fig. 6 we consider the expression

R ≡ (χ− χ0)/(χ
(2)
p.th. − χ0) (14)

which measures the deviation of the interaction part of
χ from the perturbative result χ

(2)
p.th. to order αs, and

plot the respective results, again as a function of M/T .
While our result obtained from (10) in the HTL approx-
imation [7] goes to 1 in the limit of a weakly coupled
theory, the effective over-inclusion of the leading-order in-
teraction term of [11] diverges in this limit. In fact, it turns
out that the result reported in [11] involves a contribution
∝ (M/T )2 log(M/T ) ∼ αs log(αs), which does not exist
in the correct perturbative expansion. This over-inclusion
problem is therefore much more severe than in the case
where one-loop HTL-screened perturbation theory is ap-
plied to the thermodynamic potential [15,16].

This clearly shows that the one-loop HTL resumma-
tion of the charge–charge correlator cannot be compared
with either our results, which are based on the two-loop
expression (10), or perturbation theory which it seeks to
improve upon. In our opinion it is also completely prema-
ture to compare with the available lattice results on QNS,
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because the two-loop contributions of Fig. 4 will have to
correct for the enormous over-inclusion of terms ∝ αs.

But it appears to be questionable whether a two-loop
HTL-screened perturbation theory calculation of (12) is
at all practicable. There are in fact certain technical prob-
lems with the result reported in [11] already at one-loop
order. In (34) of [11] one can see that the result for
Π>

00(ω,0) is proportional to the integral
∫

d3k

∫
dx

∫
dx′nF (x)nF (x′)ρ+(x, k)ρ−(x, k)

× (ω − x− x′)2δ(ω − x− x′)
ω2 , (15)

where ρ±(x, k) are the HTL spectral functions for the two
fermionic quasi-particle branches of the HTL approxima-
tion. In [11] the latter are used to put x = −x′, so that
the second line of (15) is reduced to δ(ω) in conformity
with the expectations from charge conservation. However,
this term is clearly ill-defined and might with equal justi-
fication be put to zero identically as is suggested by the
way we have written it. In order to have a well-defined
expression, it seems to be necessary to keep the external
spatial momentum different from zero and take the limit
to zero only after having performed the integral over ω (as
demanded by (12)). But that would make its evaluation
in HTL perturbation theory a hopelessly difficult task, al-
ready at one-loop order.

4 Conclusions

In this paper, we have discussed various possibilities for
HTL resummation in the calculation of QNS and have in
particular analysed the recent proposal of [11]. We have
shown that the resummed one-loop calculation presented
there severely over-includes the leading-order interaction
terms, while not including anything of the plasmon effect,
both of which would be corrected only at two-loop order.
Thus only the latter should be viewed as an improvement
over ordinary perturbation theory in a comparison with
the available lattice results.

However, because of the technical problems mentioned
at the end of the previous section, it would seem to be
more sensible to calculate the QNS through a two-loop
HTL-screened perturbation theory evaluation of the pres-
sure along the lines of [17].

On the other hand, the HTL-resummed calculation of
QNS of [7] is based on a two-loop Φ-derivable approxi-
mation and does include correctly both the leading-order
interaction effect, ∼ αs, and the next-to-leading-order one,
∼ α

3/2
s (together with an infinite series of higher-order ef-

fects due to HTL). The results in [7] show the same trend
as the lattice results, but a significant difference still re-
mains, which calls for further studies, both on the analytic
side, by further improving the resummation schemes, and

on the lattice side, by increasing the reliability of the nu-
merical results.
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